论文部分内容阅读
传统的手势识别通常采用数字信号处理(Digital Signal Processing,DSP)芯片或者集合方法(Ensem-ble Methods)研究实时识别问题。这些方法易导致数学模型参数繁多、硬件连接复杂和实时识别率较低。提出一种基于表面肌电信号与柔性神经树(Flexible Neural Trees,FNT)模型的实时手势识别模型。表面肌电信号(surface Electromyography,sEMG)具有非入侵式、易于采集特点,故被广泛应用于行为识别和诊断等领域。柔性神经树模型通过简单