论文部分内容阅读
为了增强基于图的局部和全部一致性(LGC)半监督算法的处理稀疏和噪声数据的能力,提出了一种基于相对变换的LGC算法。该算法通过相对变换将原始数据空间转换到相对空间,在相对空间中噪声和孤立点远离正常点,稀疏的数据变得相对密集,从而可以提高算法的性能。仿真实验结果表明,基于相对变换的LGC算法有更强的处理稀疏和噪声数据的能力。