论文部分内容阅读
针对源语言到目标语言缺乏平行语料的情况,提出了一种基于增量式自学习策略的多语言翻译模型,即利用中介语双语语料训练源语言到目标语言的翻译模型.在Transformer架构下,相比于基于中介语和直接在伪平行语料上训练的普通双语翻译模型,使用该方法在第十四届全国机器翻译研讨会(CWMT2018)多语言翻译评测数据集上的机器双语互译评估(BLEU)值提升了0.98个百分点.在此基础上,还对比了不同的预处理方法、训练策略以及多模型的平均和集成策略,其中多模型集成策略的BLEU值上可在多模型策略的基础上进一步提升0.