真挚·执着·抗争——简·爱与林黛玉人物形象之比较

来源 :白城师范学院学报 | 被引量 : 0次 | 上传用户:phirst
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
《简·爱》和《红楼梦》是古今中外极负盛名的旷世奇作。虽是不同时期、不同国度、不同作者的作品,但女主人公的形象却有着相似之处,细品之,又多有不同。从性格上看,她们都是自尊与自卑共存的矛盾体,却是一个坚强,一个柔弱。从反抗精神上看,她们虽然都反抗生活,但一个是为了追求平等,一个是为了追求爱情。从爱情信念和结局上看,她们都有着“愿得一心人,白首不相离”的爱情憧憬,有着一样坎坷的爱情经历,但一个不卑不亢、不依附他人而生,一个孤傲柔弱、最终以身殉情。探究《简·爱》和《红楼梦》这两部作品中简·爱与林黛玉的人物性格特征以期给现代人以启示。
其他文献
移动场景下的轻量级客户端不在本地储存完整的区块链,在向全节点查询交易过程中轻量级客户端会泄露与其相关的地址和交易。移动用户可以运行一个轻量级全节点来服务其轻量级客户端,从而保护其轻量级客户端的交易查询隐私,但是轻量级全节点面临区块验证效率降低问题,这会降低区块链的可扩展性。此外,区块链可用于管理移动用户访问公共无线热点的访问凭证,但仍需满足移动用户的条件匿名认证需求,以及降低访问凭证管理中的上链数
以深度学习算法为代表的人工智能算法近些年来飞速发展,在计算机视觉、自然语言处理和竞技游戏等不同的领域,深度学习算法展现的智能已经接近甚至超过了人类的水平。基于通用处理器的传统计算系统已经不能很好地支持深度学习算法的需求,新兴的智能计算系统以其在性能和功耗上的优异表现,成为了深度学习算法的重要物质载体。然而,深度学习算法快速发展,智能芯片也不断推陈出新,这对智能计算系统的通用性提出了极大的挑战。本文
车道线检测和分类是自动驾驶技术中环境感知系统的重要组成模块。传统的车道线检测和分类算法主要提取车道线的颜色、纹理等特征,进一步采用聚类或分割算法获取车道线的位置和类别信息。然而,传统算法依赖于手动提取的特征,在不良天气以及复杂道路环境下的性能具有一定的局限性。深度学习具有强大的自动提取特征的能力,可应用到复杂多变的道路场景中。目前,基于深度学习的算法是将车道线检测任务和分类任务视为语义分割任务。然
层状材料(如石墨、过渡族硫化物、黑磷、氮化硼等)具有特殊的层状结构,其原子在层内依靠共价键结合,在层间依靠范德瓦尔斯力(Van der Waals forces)结合,这种层状结构不仅使其具有丰富的结构和电子特性,而且易于通过外场进行调控,在光电子、能源等领域具有重要的应用前景。压力作为一种重要的外场调控方法,对于层状材料的独特结构,可以非常有效地改变其层间相互作用,从而显著地改变其晶体结构和电子
惰性气体放射性同位素39Ar的半衰期为269年。它在大气中分布均匀、化学性质稳定,是研究地下水、冰川和海洋等的理想示踪剂。39Ar定年的范围大约为50至1500年,正好可以覆盖3H(或CFCs、SF6等)和14C之间的定年空隙。由于39Ar极低的同位素丰度(8×10-16),因此探测非常困难,对现代痕量分析技术是一个技术挑战。最近原子阱痕量分析方法(Atom Trap Trace Analysis
石墨相氮化碳(g-C3N4)是一类非常重要的非金属聚合物,在能源和催化等众多领域中具有广泛且重要的用途。因其具有原料丰富、制备工艺简单、稳定性强、绿色安全等特性,已被成功地应用于光催化产氢、CO2还原和N2固定等多种能量转换、环境工程及其相关反应体系中。尽管具有以上诸多优点,对于单纯、未经改性的g-C3N4光催化剂,光催化反应中可见光捕获能力较低以及光生电子-空穴对的快速复合导致电荷分离效率低等问
铁电体是指拥有自发的电极化且极化方向能够通过施加外电场的方式来进行翻转的材料。自1921年第一个铁电体——罗息盐被发现后的一个世纪以来,基于贝里相位的现代铁电理论得到了建立,铁电体也在功能性电子学元器件领域得到了广泛的应用,相继诞生了铁电电容器、铁电场效应晶体管和铁电隧道结等现代电子学器件。然而,传统三维氧化物铁电体受制于临界尺寸效应,随着厚度的变薄,其铁电性会被压制。同时,由于体相的特征、强的共
固体氧化物电池(Solid Oxide Cells,SOCs)是一种效率高、环境友好的能量转换装置,与可再生能源具有良好的适配性,有望在“碳中和”中发挥重要作用。目前最为常见的电池构型为多孔支撑电极支撑电池,而其支撑电极的孔道结构对电池的电化学性能有重要影响。常规的支撑电极多为无序孔结构,不利于气体的传输,导致严重的浓差极化。本课题组前期的初步研究表明,相转化流延制备的电极具有直孔结构,其电化学性
农药在农业生产中对提升农产品质量和产量发挥着关键性的作用。但是,传统农药在喷施过程中容易受环境因素影响,造成挥发、降解和径流等行为而流失到大气、水体、土壤环境中,不仅引发了农业面源污染,还通过食物链的累积效应最终危及到人类自身的健康。因此本论文立足于研发农药新剂型,该新型农药制剂可以根据外部环境刺激来调节载体中农药活性成分的释放,避免了农药提前泄露而造成的流失,从而提高了农药的利用效率。其中,光响
玻璃态聚合物因其高模量、高硬度、优异的光学性能及可加工性能,被广泛地应用于光学显示、航空航天、交通驾驶等人类生产生活的重要领域。然而,由于玻璃态聚合物的非晶特性,在服役实况下极易发生脆性破坏,极大限制了其使用场景。在分子结构及外场参数改变下,玻璃态聚合物会在玻璃化转变温度以下极窄的温度窗口内表现出脆性与韧性的相互转变,这一现象被称为玻璃态聚合物的脆韧转变(BDT)。由于聚合物的玻璃化转变本质尚无明