论文部分内容阅读
高炉铁水的硅含量是描述铁水质量的一个重要指标。为了在出铁之前了解铁水中硅含量的高低,建立预测模型是必要的。结合遗传算法(GA)和BP神经网络,建立了优化的GA-BP预测分析模型,从某高炉选取生产数据进行学习和预测。运行结果表明,模型具有较高的预测精度,当要求绝对误差为±0.05时,命中率可达70%;绝对误差为±0.08时,命中率可达92.3%。同时,应用该模型分析回归了高炉风量、热风压力、富氧量与铁间料批数等参数与铁水硅含量之间的相关关系,其结果与高炉冶炼理论基本吻合,可为高炉生产提供