【摘 要】
:
在房地一体项目测量过程中应用传统的测绘方法,时间周期长、操作流程复杂、效率低,而无人机倾斜摄影测量技术效率高、受起降场地和天气影响小、精度高,在房地一体项目测绘过程中优势明显。本文利用无人机倾斜摄影测量方法、传统测量方法分别对万安镇天地庙村进行不动产测绘,并将两种测量方式的精度指标进行对比分析。实验结果表明:无人机倾斜摄影测量外业工作量小、效率高,且精度满足山西省相关技术规范要求。
论文部分内容阅读
在房地一体项目测量过程中应用传统的测绘方法,时间周期长、操作流程复杂、效率低,而无人机倾斜摄影测量技术效率高、受起降场地和天气影响小、精度高,在房地一体项目测绘过程中优势明显。本文利用无人机倾斜摄影测量方法、传统测量方法分别对万安镇天地庙村进行不动产测绘,并将两种测量方式的精度指标进行对比分析。实验结果表明:无人机倾斜摄影测量外业工作量小、效率高,且精度满足山西省相关技术规范要求。
其他文献
碰撞检测是计算几何、计算机动画、2D/3D游戏和物理仿真等领域不可或缺的环节,它的复杂度高计算量大,尤其是在高精度的模型中。由于它的应用广泛,多年来吸引了许多研究者的目光,成为计算机图形学中的热门研究话题。本文系统性地研究了碰撞检测,出于碰撞检测精度的考虑选择连续碰撞检测算法作为基础,对其进行改进。本文采用两级碰撞检测算法框架,期望通过对碰撞对的两层剔除,快速减少需要精确碰撞检测的碰撞对数量。由于
大规模智能集群是一个巨大的复杂系统,由大量异构的、相互作用的作战要素构成。针对集群对抗下的军事网络的多重性、耦合性等特征,如何对智能集群进行建模和分析成为了亟待解决的关键问题。一是针对集群对抗下的军事网络具有多重性、耦合性等特征,多层复杂网络模型考虑了不同网络层结构的差异以及网络层间的相互影响,因此成为了解决此类复杂系统建模问题的一个有效框架。二是针对如何通过攻击敌方网络中一定数量的关键节点或连边
随着社会进步和科技的发展,各类应用的不断出现以及海量增长的数据,人们对用户体验提出了更高的要求。这就迫使人们寻找更加有效的方法探索数据的内在价值并对数据进行合理的优化放置。云计算和边缘计算的出现为满足社会需求提供了更多的可能。然而,云计算和边缘计算服务与资源种类繁多,其计算和存储能力也千差万别。因此,面对日益复杂的网络环境和应用需求,云计算和边缘计算融合协同发展成为趋势。并且,由于现实世界中大部分
随着航天产业与信息化的发展,国防安全领域以及社会经济领域对成像卫星的依赖程度越来越高,军事侦察、气象预报、环境监测、城市规划等大量成像需求日益凸显。卫星数量和成像需求的快速增长,带来调度问题规模的增加,使得成像卫星的调度管理与任务规划更加复杂。本文面向大规模成像卫星调度问题,设计了启发式规则智能演化方法,演化设计出一组高效的调度规则或启发式策略对大规模卫星调度问题进行快速构造求解。本文的主要贡献包
岩溶峰丛洼地地区石漠化、饮水困难和水污染等环境问题高发,生态环境十分脆弱。低影响开发概念的引入有助于规范开发行为,促进水资源的高效利用,降低石漠化和地下河污染风险。根据水文条件和开发方式岩溶洼地空间分为坡耕地水土流失敏感区、表层岩溶泉水源地敏感区和落水洞污染输入敏感区。低影响开发模式总体是在3类敏感区实现5个管理目标。坡耕地敏感区的低影响开发目标设置为降低农田耗水量和减少水土流失,开发途径是减少蒸
金属3D打印技术强大的加工制造能力,及快速、轻量化的特点为武器装备的维修保障提供了新的思路,这项技术的推广应用将大大提高装备维修保障的效率。金属3D打印由于加工原理的制约,目前很难达到较高的加工精度,本质上得到的是相当于精密铸造的毛坯件,为了保证零件精度要求,3D打印件往往需要进行车、铣、磨等机加工后处理过程,这也是3D打印技术融入工业制造领域的一个重要技术环节。由于金属3D打印精度受多种因素制约
通过利用大数据爬虫技术在电商网店中爬取某个商品的好评或差评大数据后,预处理爬取的评论使非结构化的数据去掉重复数据和无效数据,对处理后的数据进行分词、词性标注,去标点符号、去停用词处理,把非结构化数据转变为结构化数据,对评论数据采用算法构建模型并分析。采用基于决策树情感分析、情感词库分析、LDA模型的主题分析,综合3种方法对评论数据进行处理,得到一份最终的情感分析,从而得到消费者偏好的产品方向,以便
科创企业以科技创新为核心,研发能力强,盈利能力稳健向好。科创企业评估有利于市场监管从而促进高质量科创企业的健康发展,更好的服务国家科技创新战略,促进经济高质量发展。目前,有大量机构和分析师研究科创企业,并发布内容专业、信息可靠的科创企业研究报告。金融从业者需要花费大量时间定期撰写科创企业评估报告,没有时效性,并且撰写的评估报告没有统一的评估指标体系,评估指标片面,格式不统一。因此,从大量科创企业文
在弹群连续打击条件下的反舰导弹目标动态分配问题是未来海上战斗中需要重点关注的问题,它主要包括导弹目标连续分配和导弹协同攻击两方面内容。本文在分析总结国内外研究现状的基础上,针对在弹群连续打击条件下的导弹目标动态分配问题,以寻找低复杂度的解决方案、建立包含多约束的导弹目标动态分配模型、寻找合适算法求解为目标,从问题模型和求解算法两方面进行了研究,具体工作如下:1、针对导弹目标动态分配问题,研究和设计
推荐系统能够预测用户对物品的潜在兴趣,在当今的在线平台上得到了广泛的应用。序列推荐在在线服务(如电子商务)中具有很高的实用价值,因此吸引了越来越多研究者的研究兴趣,序列推荐的基本目标是捕捉项目转换相关性。用户当前的兴趣随着其历史行为演变,这使得平台很难做出适当的建议。因此有必要描述用户历史记录的演化模式,对用户在项目上的事务的序列模式进行建模。通过这些用户表示,可以轻松地为每个用户推荐合适的项目。