论文部分内容阅读
为了有效提取设备状态信息,提出一种Renyi熵复杂性测度下的经验模式分解(Empirical mode decomposition,EMD)和最小二乘支持矢量机(Least square support vector machine,LS—SVM)的故障诊断方法。该方法先对振动信号进行EMD分解,得到多个基本模式分量(Intrinsic mode function,IMF)后,求出表征故障信息的若干个IMF的Renyi熵,再将其作为特征矢量输入LS-SVM进行故障分类。一个滚动轴承故障诊断实例说明该种方法