论文部分内容阅读
传统的基于字典学习的输电线路图像去噪方法,易受冗余字典影响存在重建图像边缘细节恢复不足的问题.为了有效抑制输电线路图像表面存在的高斯噪声,提出一种图像非局部自相似特性与改进K-SVD字典学习算法融合的输电线路图像去噪方法,利用图像非局部自相似性作为正则项约束并加权稀疏表达模型,提高去噪图像复原和保留细节的能力.实验选取含有自然图像和输电线路典型缺陷图像进行仿真实验测试.实验结果表明,所提出的算法不仅能够很好的保留图像纹理特征与边缘细节,对高斯噪声也具有良好的鲁棒性.