论文部分内容阅读
大型分布式系统通常将系统内存储的数据复制到多个节点以减少数据访问的时间开销.然而,随着数据副本数量的增加,副本数据更新过程的写代价也随之增加.如何合理地选择数据副本的存储节点、控制副本数量,以平衡数据的读写开销,进而有效地降低系统总的数据访问代价是分布式存储的研究热点.针对这一问题,本文提出了一种基于遗传算法的数据复制方法来平衡数据的读写开销.具体地本文对遗传算法进行了以下两方面改进:(1)建立了一个综合考虑读写数据传输代价的评价函数,以控制遗传算法的收敛方向,搜索数据副本存放位置的最优或次优策略;(2)