论文部分内容阅读
为改善图像配准的精度和稳定性,提出一种新的鲁棒图像配准算法。定义分数阶变换,强化图像特征信息,联合分数阶与高斯核函数,将图像信号变换为尺度空间,利用尺度不变特征变换提取图像特征点,通过改进最小生成树建立特征点的结构关系,完成图像特征点匹配,引入随机抽样一致性技术降低误匹配。实验结果表明,与基于Harris角点检测的匹配算法、基于随机k-d树的匹配算法以及块匹配算法相比,该算法具有更高的配准精度与鲁棒性。