论文部分内容阅读
本文研究了带有止步和中途退出的M^x/M/1/N多重休假排队系统。顾客成批到达,到达后每批中的顾客,或者以概率b决定进入队列等待服务,或者以概率1-b止步(不进入系统)。顾客进入系统后可能因为等待的不耐烦而在没有接受服务的情况下离开系统(中途退出)。系统中一旦没有顾客,服务员立即进行多重休假。首先,利用马尔科夫过程理论建立了系统稳态概率满足的方程组。其次,在利用高等代数相关知识证明了相关矩阵可逆性的基础上,利用矩阵解法求出了稳态概率的矩阵解,并得到了系统的平均队长、平均等待队长以及顾客的平均损失率等性能指