论文部分内容阅读
当正交小波基ψm,n=2-m/2 ψ(2-m x-n),m,n∈Z的整平移出现扰动而变为λn(λn-n<1)时,该小波基可构成L2(R)空间的Riesz基ψm,λm=2-m/2 ψ(2-m x-λn).这种小波基称为非调和小波基.对具有时频局部化的函数f(x),可用这种小波逼近,从而推广了Dauberchies相应的结果.