论文部分内容阅读
将最小二乘支持向量机方法引入火电厂DCS的测量数据时序异常检测领域,该方法很好地建立了火电厂DCS的测量数据时序预测模型,具有预测真实值能力强、全局优化及泛化性好等优点。将该方法应用于某600 MW超临界火电机组DCS测量数据中,经过训练后的LS-SVM模型对再热蒸汽温度数据的检验样本进行不良值检测与真实值预测,均方根误差和平均相对误差分别为0.067%和0.050%,均方根误差是BP网络模型、RBF网络模型的8.756%和8.272%,平均相对误差是BP网络模型、RBF网络模型的7.541%和7.