【摘 要】
:
针对齿轮箱故障信号的非线性和非平稳性特征,提出基于经验小波变换(Empirical Wave-letTransform,EWT)、关联维数(Correlation Dimension,CD)和支持向量机(Support Vector Ma
【机 构】
:
上海理工大学能源与动力工程学院,上海200093;上海市动力工程多相流动与传热重点实验室,上海200093
论文部分内容阅读
针对齿轮箱故障信号的非线性和非平稳性特征,提出基于经验小波变换(Empirical Wave-letTransform,EWT)、关联维数(Correlation Dimension,CD)和支持向量机(Support Vector Ma-chine,SVM)的故障诊断方法.首先通过EWT对风力机齿轮箱信号进行分解,得到若干本征模态函数(Intrinsic Mode Function,IMF)分量,再采用G-P算法求取各组IMF分量的关联维数,并将各组关联维数特征集输入SVM中完成故障识别及分类.结果表明:振动信号关联维数与嵌入维数呈正相关,且正常信号与故障信号的关联维数区分度不明显,通过SVM能对其进行精确识别和分类;该方法能有效提取系统故障非线性特征,故障识别准确率高达100%.
其他文献
Frequent subgraph mining (FSM) is a subset of the graph mining domain that is extensively used for graph classification and clustering. Over the past decade, ma
Different living environments of cancer samples lead to different molecular mechanisms of cancer development, which in turn leads to different cancer subtypes.
针对变分模态分解(VMD)算法中分解层数和惩罚因子2个参数对分解结果有着显著影响且不易确定的问题,提出了灰狼和布谷鸟混合优化VMD算法(简称优化VMD算法).该方法以包络熵差异