论文部分内容阅读
针对目前火灾探测技术难以满足实际需要的问题,在分析RBF网络结构特点及最近邻聚类学习算法的基础上,提出用RBF神经网络建立火灾探测器模型,以火灾初期实验得到的环境温度、烟雾浓度、C0含量为输入,以明火概率、阴燃火概率、无火概率为输出对RBF网络进行训练,并进行仿真试验,结果表明,实际输出与期望输出的相差较小.