论文部分内容阅读
为了使决策树健壮,我们从描述信息增益开始,关于这个规则的置信度,使用C4.5作为度量。这可以使我们快速的解释为什么信息增益,象置信度,偏重大多数类的规则的结果。为了克服这种偏见,我们介绍一种新度量,类置信度比例(CCP),它是CCPDT(类置信度比例决策树)形成的基础。这两种变化在一起产生一个分类器,它不仅比传统的决策树,而且比著名的平衡取样技术学习树能更好的完成统计。