论文部分内容阅读
针对现有图像序列弱小目标识别存在图像特征学习不全面、训练样本较大,导致对相似物体识别率及准确率较低的问题,提出基于多模态深度学习的图像序列弱小目标识别.利用弱小目标与背景之间的相关性对单帧图像进行背景抑制,得到目标和高频噪声,对图像做目标分割处理,剔除高频噪声.在此基础上,使用加入稀疏性约束的自编码器不断调节其自身参数,压缩输入信息,提取有用的输入特征,训练出最佳唯一向量,使用优化的CNN深度学习模型完成弱小目标识别.实验结果表明,所提方法能够在不依赖大量识别训练的情况下,始终保持较高的识别率,最大识别率为99.21%,优于传统方法.