煤矿巷道顶板宏观单裂隙的力学行为及影响分析

来源 :西安科技大学学报(社会科学版) | 被引量 : 0次 | 上传用户:llwjm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:宏观尺度裂隙对岩体完整性和强度影响显著,其赋存形态亦影响巷道顶板的稳定。为了揭示裂隙赋存形态对巷道顶板的影响规律,以“张开率”和“切向滑移度”来表征裂隙(层理)的行为状态,利用FLAC3D中Interface命令构建裂隙(层理),分析了不同裂隙倾角和连通率的单裂隙条件下巷道开挖后顶板裂隙的力学行为、位移、应力及其分布。结果表明:裂隙倾角及连通率影响裂隙开裂宽度及范围、裂隙(层理)剪切位移及范围、层理剪切滑移区分布;裂隙张开率和切向滑移度均与连通率呈“双曲线”关系;裂隙倾角对裂隙的形态与演化有较大影响;顶板下沉与裂隙倾角和连通率呈现单调增(减)关系。因此,控制顶板下沉能有效控制巷道顶板裂隙的扩展与连通,亦有助于预防顶板离层和滑移。
  关键词:宏观裂隙;张开率;切向滑移度;连通率;力学行为;顶板
  中图分类号:TD 325文献标志码:A
  DOI:10.13800/j.cnki.xakjdxxb.2019.0206文章编号:1672-9315(2019)02-0217-07
  0引言
  裂隙对岩体质量有着重要的影响。裂隙按尺度大体可以分为宏观、细观和微观3类,其中,宏观尺度裂隙(如原生的断层、节理,以及次生的采动裂隙等)严重破坏岩体完整性,对工程岩体的强度等力学性质影响尤为显著[1-3]。裂隙岩体巷道的稳定性主要受结构面产状及力学性质控制[4-9],随着掘进工作面不断推进,巷道顶板冒落、垮塌事故时有发生,对井下工作人员的生命财产安全造成严重威胁,制约矿山的安全高效开采。
  受成岩作用和构造运动的影响,地层内必然存在节理、裂隙和断层等结构面,这些分布在岩层中的弱面将巷道围岩体分割成具有不同尺度的不连续体,这些岩层在巷道开挖前后因应力状态的改变而由原始的静力平衡状态进入运动状态,最终可能造成巷道围岩体的失稳破坏[10-12]。文献[13-15]研究了裂纹长度、裂隙面上法向应力、裂隙倾角等对裂隙岩体强度和破坏模式的影响,得出了大量有益的结论。但这些结论是以裂隙岩体试件为研究对象所获取的,将其用于巷道空间围岩的可靠性是值得探讨的。王志刚、郝传波、李学华、黄醒春等一批学者对裂隙岩体巷道的失稳破坏、裂隙扩展与演化等方面做了相关研究[16-19]。然而,关于宏观单裂隙条件下巷道顶板裂隙的力学行为及其对巷道顶板的影响方面的研究仍较少,不同裂隙位态对巷道顶板位移(应力)特征及顶板上位岩层的影响尚存疑点,裂隙的力学行为及其对顶板影响还有待进一步的研究。
  至此,在前人研究的基础上,文中以煤矿砂岩顶板巷道为研究对象,采用FLAC3D中interface命令构建裂隙顶板巷道模型,分别研究不同倾角和连通率情况下顶板形态,着重分析裂隙赋存形态(以裂隙倾角和连通率来表征)对巷道顶板应力及位移的响应规律,其结果对研究巷道工程裂隙岩体的形变与破坏机制有一定参考价值和借鉴意义,亦可对裂隙顶板岩层分类提供新思路。
  2接触面的基本理论
  2.1接触面的几何构成
  如图1所示,FLAC3D中接触面单元由一系列三节点的三角形单元构成,接触面单元将三角形面积分配到各个节点中,每个接触面节点都有一个相关的表示面积。接触面单元通过接触面结点和实体单元表面之间来建立联系。
  2.2接触面的本构关系
  图2为接触面的本构关系模型图。对于Coulomb滑動的接触面单元,存在2种状态:相互接触和相对滑动。根据Coulomb抗剪强度准则可以得到接触面发生相对滑动所需要的切向力Fsmax为[20]
  Fsmax=cifA+tanif(Fn-uA)(1)
  式中cif为接触面的凝聚力;if为接触面的摩擦角;u为孔压。
  当接触面上的切向力小于最大切向力,即当|Fs|  σn∶=σn+|Fs|0  式中ψ为接触面的膨胀角;|Fs|0为修正前的剪力大小。
  3数值计算与分析
  3.1计算模型
  针对不同倾角和连通率的单裂隙顶板开挖巷道进行数值计算,开挖后不支护,设置不平衡力比率为1×10-5时收敛(以下同)。图3为垂直单裂隙顶板巷道模型(连通率为1),模型长×宽×高(x×y×z)=50 m×1 m×30 m.该模型在x方向和y方向以及底部采用FIX命令固定边界,模型上表面为自由边界,并施加10 MPa以模拟上覆岩体的自重(巷道埋深约400 m)。岩体破坏选取MohrCoulomb强度准则。计算所采用的岩体物理力学参数见表1,结构面参数见表2.图3裂隙顶板巷道三维模型
  3.2巷道顶板裂隙(层理)的力学行为
  裂隙倾角是指裂隙面与水平面的夹角,裂隙倾角影响顶板岩层变形与力学性能,用θ来表示。裂隙连通长度是指裂隙面沿岩层厚度方向延伸的最大距离,裂隙连通长度影响顶板岩层强度特性及岩体的连续性,用d来表示。岩层裂隙沿某方向上的连通长度与岩层沿该方向的厚度(用h来表示)之比定义为裂隙的连通率(用k来表示),即k=d/h.
  利用FLAC3D的interface命令构建裂隙并模拟不同裂隙倾角及连通率条件下顶板岩层的力学行为。图4显示了在不同裂隙倾角及连通率条件下裂隙(层理)在开挖巷道后破坏状态。
  由图4发现,裂隙开裂范围随θ的减小而减小,顶板上位岩层不离层;同一裂隙倾角条件下,裂隙开裂范围随着连通率的减小而减小。裂隙(层理)的剪切滑移范围均随θ的减小而减小,受裂隙连通率的影响,层理面剪切滑移区向裂隙面的两侧转移,裂隙倾角影响层理剪切滑移区的分布。   裂隙(层理)法向开裂深度指裂隙(层理)沿某方向扩展延伸的最大长度,用s来表示。裂隙(层理)法向开裂宽度是指裂隙(层理)在法向开裂深度范围内裂隙(层理)面同一接触点因分离所产生的最大直线距离。裂隙(层理)张开率是指裂隙(层理)法向开裂深度与裂隙连通长度之比,用v来表示,即v=s/h,则有k·v=s/d.表明,在地质条件和开采技术条件一定时,连通率与张开率之积为一定值。
  由图5可知:①当θ>15°时,裂隙张开率随连通率的增大而减小;当θ≤15°,裂隙张开率随连通率的减小呈先增大后减小,且当k=0.1时,裂隙张开率为0;②当k>0.5时,裂隙张开率随θ的减小呈先增大后减小,当k≤0.5时,裂隙张开率随θ的减小而减小;当k≤0.3,且θ>15°时,裂隙张开率等于连通率(见表3),表明此时裂隙可能在未连通处发生扩展;③当k=1时,裂隙顶板与上位岩层离层(θ=60°或75°)。
  图6为巷道开挖稳定后裂隙(层理)法向张开宽度与连通率关系曲线,由图6可知:①当θ≤45°,裂隙法向开裂宽度随连通率的增大而增大(当θ=30°时法向开裂宽度最大),且在连通率为最大值和最小值时开裂宽度增长迅速;②当θ>45°时,裂隙法向开裂宽度随连通率的增大呈现波动性变化;③当θ<15°,且k≤0.1时,裂隙不发生法向开裂;④当θ=60°~75°时,完全贯通裂隙顶板上位岩层层理产生法向开裂,即顶板与上位岩层离层。
  裂隙(层理)切向滑移区长度是指裂隙(层理)沿某方向处于剪切滑移状态的最大长度。切向位移是指切向滑移区范围内裂隙(层理)产生的最大切向位移。裂隙(层理)切向滑移度是指切向滑移区长度与裂隙连通长度之比。
  图7为巷道开挖稳定后裂隙(层理)切向滑移度与连通率关系曲线,由图7可知:①当θ>15°,且k>0.1时,裂隙切向滑移度等于1,即裂隙切向滑移区长度等于裂隙连通长度,当θ≤15°,且k≤0.1时,裂隙不发生切向滑移;②当θ≥75°时,层理切向滑移度随裂隙连通率的增大呈先减小后增大,在k=0.8时出现最小值,当15°<θ<75°时,层理切向滑移度随裂隙连通率的增大呈非持续性减小,当θ≤15°,层理切向滑移度随裂隙连通率的增大呈持续性减小。
  图8为巷道开挖稳定后裂隙(层理)切向位移与连通率关系曲线,由图8可知:①当θ≤30°时,裂隙切向位移随连通率的增大呈先增大后减小,且倾角越小,拐点处的连通率亦越小,当θ>30°时,裂隙切向位移随连通率的增大而增大;②当k≤0.6时,层理的切向位移为定值,但裂隙倾角越小其值越小,当k>0.6时,层理的切向位移随连通率的增大而增大(当θ=45°时保持定值)。
  3.3巷道围岩应力分布特征
  图9为不同裂隙倾角及连通率条件下开挖巷道后拉应力分布。由图9可知,①顶板存在裂隙条件下,拉应力区随θ的减小而增大,且在倾角较小图8巷道开挖稳定后裂隙(层理)切向位移与连通率关系时出现由对称分布转变为沿裂隙面断续的非对称分布;②顶板拉应力峰值受顶板裂隙影响显著,且θ越小,其峰值越大。
  3.4巷道顶板位移特征
  图10为不同裂隙倾角及连通率条件下巷道开挖稳定后位移分布,图11为巷道开挖稳定后顶板下沉曲线,由图10和11可知,①裂隙连通率影响巷道顶板位移峰值区的分布,位移峰值区随θ的减小而减小,当裂隙倾角越大且连通率越小时,峰值区分布对称性越显著,当裂隙倾角越小且连通率越大时,峰值区分布非對称性越显著;②当k≤0.1时,顶板位移峰值随θ的减小而减小,当k>0.1时,顶板位移峰值随θ的减小呈先减小后增大;③顶板下沉量随连通率的增大显现出不同程度的增大,当θ较小时,顶板下沉量较大,增长幅度较大,当θ较大时,顶板下沉量较小,增长幅度较小;④受顶板裂隙影响,巷道两帮位移随顶板裂隙连通率的减小而增大。
  4结论
  1)裂隙倾角和连通率影响裂隙的力学行为,裂隙连通率和张开率与裂隙连通率和切向滑移度之间均呈“双曲线”关系,但后者的“双曲线”关系受裂隙倾角的影响显著于前者。以θ=45°为分界线,裂隙开裂宽度具有较大变化差异。当θ≤15°时,裂隙将处于原始形态,当θ>15°时,原裂隙将衍生新的连通或破裂;
  2)裂隙倾角及连通率影响裂隙开裂宽度及范围、裂隙(层理)剪切位移及范围、层理剪切滑移区分布,因其影响而致层理面剪切滑移区向裂隙面的两侧深处转移;裂隙连通率影响巷道顶板位移峰值的大小及其分布范围,裂隙倾角影响顶板拉应力区峰值大小及其分布的对称性;
  3)顶板下沉与裂隙倾角和连通率呈现单调增减关系,因此,控制顶板下沉可降低裂隙张开率,进而能有效控制巷道顶板裂隙的扩展与连通,这亦是预防顶板离层和滑移的关键。
  参考文献(References):
  [1]石祥超,张茹,高明忠,等.顶板随机裂隙对采动煤岩体支承压力的影响[J].中国矿业大学学报,2013,42(6):948-953.
  SHI Xiangchao,ZHANG Ru,GAO Mingzhong,et al.Numerical simulation of the effects of roof random fractures on abutment pressure of mining working face[J].Journal of China University of Mining & Technology:2013,42(6):948-953.
  [2]谢强,姜崇喜,凌建明.岩石细观力学实验与分析[M].重庆:西南交通大学出版社,1997.
  XIE Qiang,JIANG Chongxi,LING Jianming.Experiment and analysis of rock micromechanics[M].Chongqing:Southwest Jiaotong University Press,1997.   [3]张旭,郭奇峰,李书强,等.裂隙岩体崩落法回采凿岩巷道顶板稳定性研究[J].矿业研究与开发,2017,37(5):6-10.
  ZHANG Xu,GUO Qifeng,LI Shuqiang,et al.Study on roof stability of drilling drift as the fractured rock mass mined by caving method[J].Mining Research and Development,2017,37(5):6-10.
  [4]苏石.胡麻岭隧道不同产状裂隙岩体稳定性及支护力学特性[J].路基工程,2012(2):95-98.
  SU Shi.Research on stability and support mechanical properties of fractured rock mass with different attitudes at humaling tunnel[J].Subgrade Engineering,2012(2):95-98.
  [5]Torao J,Rodríguez Díez R,Rivas Cid J M,et al.FEM modeling of roadways driven in a fractured rock mass under a longwall influence[J].Computers and Geotechnics,2002,29(6):411-431.
  [6]WANG Fangtian,ZHANG Cun,WEI Shuaifeng,et al.Whole section anchor grouting reinforcement technology and its application in underground roadways with loose and fractured surrounding rock[J].Tunnelling and Underground Space Technology,2016,51:133-143.
  [7]Piotr Makowski,ukasz Ostrowski,Piotr Bachanek.The impact of the low throw fault on the stability of roadways in a hard coal mine[J].Studia Geotechnica et Mechanica,2017,39(1):63-72.
  [8]Karolina AdachPawelus.Influence of the roof movement control method on the stability of remnant[C]//IOP Conference Series:Earth and Environmental Science,IOP Publishing,2017,95(4):042022.
  [9]蒋力帅.工程岩体劣化与大采高沿空巷道围岩控制原理研究[D].北京:中国矿业大学(北京),2016.
  JIANG Lishuai.Study on weakening of engineering rockmass and control principle of gobside entry in large height mining condition[D].Beijing:China University of Mining and Technology(Beijing),2016.
  [10]ZHANG Yan.Research on the height of waterflowing fractured zone under the weak roof strata and fully mechanized caving condition[J].Advanced Materials Research,2015,3848(1092).
  [11]宋選民,顾铁凤,柳崇伟.受贯通裂隙控制岩体巷道稳定性试验研究[J].岩石力学与工程学报,2002(12):1781-1785.
  SONG Xuanmin,GU Tiefeng,LIU Chongwei.Experimental study on roadway stability in rockmass with connected fissures[J].Chinese Journal of Rock Mechanics and Engineering,2002(12):1781-1785.
  [12]顾铁凤.贯通裂隙控制岩体巷道稳定规律的数值模拟[J].采矿与安全工程学报,2007(4):432-438.
  GU Tiefeng.Numerical simulation of roadway stability laws in rock mass with connected fissures.[J]Journal of Mining and Safety Engineering,2007(4):432-438.
  [13]王德咏,王永平,莫海鸿.含内置裂隙的节理岩体的剪切行为数值模拟[J].地下空间与工程学报,2016,12(S2):488-492,509.
  WANG Deyong,WANG Yongping,MO Haihong.Numerical study of shear behavior of rock joints with embedded crack[J].Chinese Journal of Underground Space and Engineering,2016,12(S2):488-492,509.   [14]任利,谢和平,谢凌志,等.基于断裂力学的裂隙岩体强度分析初探[J].工程力学,2013,30(2):156-162,168.
  REN  Li,XIE Heping,XIE Lingzhi,et al.Preliminary study on strength of cracked rock specimen based on fracture mechanics[J].Engineering mechanics,2013,30(2):156-162,168.
  [15]李树忱,马腾飞,蒋宇静,等.深部多裂隙岩体开挖变形破坏规律模型试验研究[J].岩土工程学报,2016,38(6):987-995.
  LI Shuchen,MA Tengfei,JIANG Yujing,et al.Model tests on deformation and failure laws in excavation of deep rockmass with multiple fracture sets[J].Chinese Journal of Geotechnical Engineering,2016,38(6):987-995.
  [16]王志刚,郭晓菲.双河煤矿采动巷道顶板裂隙的分形研究[J].岩土力学,2017,38(8):2377-2384.
  WANG Zhigang,GUO Xiaofei.Study of roof fissures of mining induced roadway in Shuanghe coal mine based on fractal theory[J].Rock and Soil Mechanics,2017,38(8):2377-2384.
  [17]郝传波,张国华,肖福坤,等.顶板节理裂隙发育条件下回采巷道的垮塌形态[J].黑龙江科技学院学报,2013,23(1):1-5.
  HAO Chuanbo,ZHANG Guohua,XIAO Fukun,et al.Study of collapse shape about mining gateway under condition of developed joints and fractures roof[J].Journal of Heilongjiang Institute of Science  and Technology,2013,23(1):1-5.
  [18]李学华,梁顺,姚强岭,等.泥岩顶板巷道围岩裂隙演化规律与冒顶机理分析[J].煤炭学报,2011,36(6):903-908.
  LI Xuehua,LIANG Shun,YAO Qiangling,et al.Analysis on fissureevolving law and rooffalling mechanism in roadway with mudstone roof[J].Journal of China Coal Society,2011,36(6):903-908.
  [19]黃醒春.层状裂隙岩石顶板的失稳[J].上海交通大学学报,1998(8):104-108.
  HUANG Xingchun.Buckling behaviors of cracked roof[J].Journal of Shanghai Jiaotong University,1998(8):104-108.
  [20]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2017.
  CHEN Yuming,XU Dingping.FLAC/FLAC3D foundation and engineering example[M].Beijing:China Water and Power Press,2017.
其他文献
研究鲤鱼肉在-1℃冰温、-3℃、-3℃添加冰点调节剂、以及-18℃冷冻贮藏对鱼肉品质特性的影响。测定在不同贮藏条件下鲤鱼肉菌落总数、硫代巴比妥酸值、挥发性盐基氮和亮度值
当前,我国电子商务人才缺口巨大,现有电子商务人才培养存在目标不明确、课程设置不合理、教学方法单一、缺乏创新创业指导等困境,提出"理论教学、实践教学、应用创新、科学研
创新创业教育已经成为培养高层次人才,促进社会进步与发展的重要手段,但在改革与发展中制约创新创业教育的瓶颈问题依然存在,本文分析当前中医院校创新创业教育困境并提出对
本文从社会环境、部分领导和管理部门的重视程度、教育对象、教师自身因素、教学内容、教学方式方法、教学手段等角度分析了造成目前影响高职院校思想政治理论课教学实效性不
目的随着我国医疗技术发展水平的提高,分析放射科进行护理过程中的风险管理的具体措施与实际的应用效果。方法本次调查研究选取的是我院在2017年9月到2018年2月之间的100名放
"现代学徒制"培养模式要求专业基础教育与企业技能培训深入结合。首先总结了高职物流专业实施"现代学徒制"人才培养模式中存在的问题,以安徽商贸职业技术学院为例对高职院校物流
研究表明病毒感染可能在动脉粥样硬化的形成中起重要作用,其机理为病毒故事可能通过对内皮细胞的损伤/或改变细胞脂质过程触发AS的产生以及加速其形成,并通过诱导细胞的转化,活性介
目的探讨阿伐他汀(atorvastatin)对培养的自发性高血压大鼠 (spontaneous hypertensive rats,SHR)和正常血压Wistar大鼠心肌成纤维细胞(cardiac fibroblasts , CFs)增殖和胶
目前,我国大米属于国家限制性进口产品,实行关税配额许可管理。阐述该商品归类对企业的重要性和必要性;同时,针对配额内的大米如何归类,也进行了详细分析.
目的探讨UF-50尿沉渣分析仪检测尿中管型的准确性及其影响因素。方法随机收集住院患者的晨尿标本500份,先用UF-50尿沉渣分析仪自动进样模式检测,后再将标本离心取沉渣于Olympus