船用柴油机拉缸故障失效分析

来源 :理化检验(物理分册) | 被引量 : 0次 | 上传用户:chencr33
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对船用柴油机拉缸故障,利用直读光谱仪、光学显微镜、扫描电子显微镜、能谱仪等对活塞裙以及缸套断口的宏观和微观形貌特征、化学成分、金相组织和力学性能等进行分析.结果表明:活塞裙的薄壁孔存在疏松缺陷,这些缺陷引起活塞裙疲劳开裂,使得活塞裙与缸套配套间隙减小,活塞裙与缸套产生黏着磨损,最终发生拉缸故障.
其他文献
采用真空蒸馏?籽晶定向凝固工艺制备6N及以上高纯铟,考察了蒸馏温度、凝固速度及凝固次数对杂质脱除率的影响,并对半导体用高纯铟进行了表面分析及其纯度测定.结果表明,真空蒸馏温度1273 K、保温时间60 min、定向凝固温度150~170℃、籽晶转速5 r/min、坩埚转速15 r/min、凝固速度20 mm/h、凝固次数3次条件下,高纯铟产品纯度达到6N及以上超高纯铟标准,该工艺所得金属铟结晶度高,呈现出片状结构,金属呈单晶相,实现了6N及以上金属铟的稳定结晶,并且金属铟没有腐蚀和表面氧化,该半导体用高纯
对含杂三元正极废粉和纯三元正极粉进行了氢还原?水浸提锂工艺对比试验,采用XRD、SEM?EDS和红外光谱等检测手段对反应产物进行表征分析.结果表明,纯三元正极粉较佳焙烧条件为:焙烧温度500℃、焙烧时间30 min、氢气流量100 mL/min,此条件下所得焙烧料在浸出液固比10:1、温度90℃、时间120 min条件下浸出,锂浸出率为98.71%.含杂三元正极废粉较佳焙烧条件为:焙烧温度500℃、焙烧时间90 min、氢气流量100 mL/min,此条件下所得焙烧料在相同条件下水浸时,锂浸出率为84.7
为分析富La、Ce混合稀土(RE)和Mg元素协同作用对Al?9.5Si合金组织演变的影响,采用凝固曲线测试、金相显微镜与扫描电镜观察等手段对不同成分的Al?9.5Si合金样品的形核温度、微观组织形貌等进行了研究.结果表明,相比于单独加入RE或Mg,向Al?9.5Si合金中同时加入1.5%Al?10RE和0.4%Mg使合金变质后,其初生α?Al和共晶形核温度下降约50℃,且过冷度更大;晶粒尺寸和二次枝晶臂间距分别下降93.5%和38.5%,晶粒细化效果显著;共晶Si形貌由片状转变成性能更优的纤维状.
以异丙醇作为溶剂,通过溶剂热法在不同反应时间下制备了前驱体碳酸钴,再采用高温煅烧法制备了超细纳米/微米多孔四氧化三钴粉末,研究了反应时间对前驱体碳酸钴及四氧化三钴的组成及形貌的影响,并测定了四氧化三钴负极材料电化学性能.结果表明,纳米/微米球(2~4μm)由细小且均匀的四氧化三钴纳米颗粒和孔洞组成;以四氧化三钴作为锂离子电池负极材料,在0.5和1 A/g电流密度下,循环450圈后比容量分别保持在680和473 mAh/g,显示出优异的电化学性能.
塑性应变比(r值)是评价金属材料成形性能的重要指标之一,ISO 10113:2020标准规定:采用全自动方法测试时,应在试样平行长度部分至少均匀测试3处宽度.根据ISO 10113:2020标准的要求,采用视频引伸计同时测试了试样长度和宽度方向的实时应变.结果表明:视频引伸计采用非接触式测试,避免了与试样接触产生的人为不确定因素的影响,测试结果与人工测试结果也更为接近.
采用水热法合成了Bi2 WO6,并以Bi2 WO6为载体负载AgI,用光诱导法制备了复合光催化剂Ag?AgI/Bi2 WO6.通过X射线衍射、扫描电子显微镜和选区电子衍射分析对制备的光催化剂样品进行表征,并通过光催化降解罗丹明B.研究了光催化剂Ag?AgI/Bi2WO6的光催化性能.结果表明,光催化剂Ag?AgI/Bi2WO6对罗丹明B的降解效果较好,降解率达到99.8%,重复使用5次后对罗丹明B的降解率为95.5%.光催化降解和重复性试验结果表明,负载Ag?AgI的复合光催化剂Ag?AgI/Bi2 WO
结合引伸计抖动、夹持不良、下垂、定位不准等对塑性应变比(r值)测试的影响案例,结合计算公式分析了r值测试结果存在偏差的原因.结果表明,案例中r值测试结果异常是由纵、横向引伸计测试反馈不同步造成的.提供了查找测试误差的方法和步骤,并提出了合理建议.
采用扫描电子显微镜(SEM)、电子背散射衍射(EBSD)、电导率测试及常温拉伸实验,结合剥落腐蚀测试、晶间腐蚀测试和电化学测试研究了微量Zn对Al-Cu-Mg合金组织与性能的影响.试验结果表明,微量Zn的添加明显提高了合金T3态(预拉伸+自然时效)的塑性.随着Zn含量的增加,T3态合金点蚀电位提高,S相、阴极相和铝基体之间的电位差减小,点蚀的形成和晶间腐蚀的传播更加困难,合金的晶间腐蚀敏感性降低.
期刊
以丙烯酰胺为单体,分别以多孔氧化石墨烯(HGO)和氧化石墨烯(GO)为交联剂,采用原位聚合法制备了多孔氧化石墨烯增强增韧聚丙烯酰胺水凝胶(PHH)和氧化石墨烯增强增韧聚丙烯酰胺水凝胶(PGH).结果表明,GO和HGO都能同时提高水凝胶材料强度和韧性;但由于HGO与高分子链形成的特殊贯穿结构,相对GO强韧化水凝胶,HGO强韧化水凝胶强度和韧性提高更明显:PHH断裂伸长率高达4847%,相较于PGH提高了1.9倍,断裂韧性提高了95%.研究成果为聚合物基复合材料的增强增韧提供了一种新的力学模型并具有重要推广意