论文部分内容阅读
针对杂乱背景和光照变化等容易使目标跟踪产生漂移的问题,提出一种基于递推估计和上下文更新的鲁棒目标跟踪方法,该方法是颜色粒子滤波目标跟踪的有效扩展。通过建立颜色粒子滤波跟踪的通用框架,利用上下文信息分配目标外观变化的置信度,在重采样阶段,采用递推估计从其外观相似度分数计算的权重选择粒子,并初始化异常粒子。形变和光照变化的视频测试表明,该方法可以克服光照变化和背景的影响,递推估计可以处理偏离整体估计的异常粒子。相比于标准颜色粒子滤波、粒子随机搜索法等方法,该方法在跟踪框中心误差和平均重叠方面均优于其他方