论文部分内容阅读
高精度物体检测网络急剧增加的参数和计算量使得它们很难在车辆和无人机等端侧设备上直接部署使用。针对这一问题,从网络压缩和计算加速两方面入手,提出了一种面向残差网络的新型压缩方案来实现YOLOv3的压缩,并通过ZYNQ平台对这一压缩后的网络进行加速。首先,提出了包括网络裁剪和网络量化两方面的网络压缩算法。网络裁剪方面,给出了针对残差结构的裁剪策略来将网络剪枝分为通道剪枝和残差链剪枝两个粒度,解决了通道剪枝无法应对残差连接的局限性,进一步降低了模型的参数量;网络量化方面,实现了一种基于相对熵的模拟量化方法