论文部分内容阅读
基于线性压电理论,本文获得了含有中心反平面裂纹的矩形压电体中的奇异应力和电场。利用Fourier积分变换和Fourier正弦级数将电绝缘型裂纹问题化为对偶积分方程,并进一步归结为易于求解的第二类Fredholm积分方程。获得了裂纹尖端应力、应变、电位移和电场的解析解,求得了裂纹尖端场的强度因子及能量释放率。分析了压电矩形体的几何尺寸对它们的影响。结果表明,对于电绝缘型裂纹,裂纹尖端附近的各个场变量都具有-1/2阶的奇异性,能量释放率与电荷载的方向及大小有关,并且有可能为负值。