论文部分内容阅读
设r,s,t是两两互素且满足r2+s2=t2的正整数,1956年,Jesmanowicz猜测:对任意给定的整数n,丢番图方程(rn)x+(sn)y=(tn)z仅有正整数解x=y=Z=2.讨论n=1,r=a2-b2,s=2曲,t=a2+b2,b=2m,(a,b)=1,a>b>0的情形,在a,b之一不含4k+1型素因子,a,b满足若干同余式与不等式的条件下证明了Jesmanowicz猜想成立.