论文部分内容阅读
为了解决飞机、直升机、导弹等3类空中目标图像的自动分类问题,提出了一种基于改进词袋模型的空中目标识别方法。首先采集3类多个型号的空中目标灰度图像并分割提取出目标,接着利用稠密采样方法进行SIFT特征提取,然后用模糊C均值聚类方法,对空中目标图像的SIFT特征进行聚类,得到大量空中目标图像的视觉单词。最后用视觉单词直方图训练支持向量机分类器,完成空中目标的自动分类。仿真实验表明,文中提出的算法能准确区分空中目标类别,性能优于传统的采用K均值聚类的词袋模型,且优于仿射矩。