论文部分内容阅读
神经丝蛋白质是医学中研究肌萎缩侧索硬化症病情进展的标志物.为了能精确捕获某种神经丝蛋白质在神经鞘中的活动特性,引入了一种多方法融合的粒子滤波算法跟踪神经丝蛋白质的运动.该算法汲取颜色直方图法、核函数法及图模法等的优点,融合粒子滤波算法,实现自动跟踪神经丝蛋白质.此外,为了解决粒子滤波中样本贫化,即在粒子滤波计算中很大一部分粒子重叠到一个单独的点上的情况,需要重采样计算解决此问题.但在重采样过程中,容易造成一些粒子丢失各向异性而导致跟踪精度降低,甚至跟踪目标失败,故结合粒子滤波算法提出了一种改进重采样约束方