论文部分内容阅读
针对虚拟机放置问题,引入了布谷鸟搜索算法。首先,将虚拟机放置方案映射为鸟巢,并按照适应度高低将其分成顶巢和底巢。其次,通过扰动函数对底巢和顶巢进行扰动。最后,通过选择、迭代得到最佳放置方案。该算法可用于云数据中心的物理机整合,使放置物理机数量最小化。通过Cloudsim进行仿真,仿真结果表明,比起重排序分组遗传算法、分组遗传算法、改进的最小加载和改进的降序首次适应算法,提出的方法不仅避免了局部最优,而且具有更高的性能优势。