论文部分内容阅读
针对稀疏表示残差过大的问题,提出了采用遗传算法的分层贪婪字典训练算法.该算法首先将数据样本变成一维信号,然后将问题划分为若干个子问题,采用贪婪算法思想分层训练字典.为了以一定概率寻找到每一层字典的最优值,使用遗传算法来训练每一层字典,最后将每层字典级联作为最终的字典.在训练每一层字典时,先采用号码矩阵对样本的分类进行表示,然后以平均低秩逼近的残差能量作为衡量适应度的参数,以联赛选择的方式选出优胜个体,通过单点交叉和变异方法产生新的个体.对二值序列的稀疏表示信号重建的实验结果表明,该算法在训练样本量较