【摘 要】
:
现有的实体分辨方法在准确性和效率上各有所长,将易分辨和难分辨的记录对分开,为下一步分别应用不同分辨方法提供基础。对待划分的记录对,利用变精度邻域粗糙集分别计算相似
【机 构】
:
解放军理工大学指挥信息系统学院,南京电讯技术研究所
论文部分内容阅读
现有的实体分辨方法在准确性和效率上各有所长,将易分辨和难分辨的记录对分开,为下一步分别应用不同分辨方法提供基础。对待划分的记录对,利用变精度邻域粗糙集分别计算相似记录对和不相似记录对的上下近似集,得到全体记录对的上下近似集及对应的边界,处于边界域的记录对即为难分辨的记录对,其余为易分辨的记录对。分析了变精度邻域粗糙集中的包含度阈值和距离阈值对于记录对划分的影响。利用实验比较难分辨、易分辨和原始记录对在利用相似度阈值分类和利用KNN分类时的准确性,说明了划分的有效性。
其他文献
由于传统基于梯度的方形边缘检测算子包含边缘方向过少(一般为2个或4个方向),因此无法从多分辨率角度检测边缘,进而会丢失其他方向的边缘信息。针对上述问题,提出一种具有多尺度、多分辨率特性的边缘检测算子,称为可变局部边缘模式(Varied Local Edge Pattern,VLEP)算子,并用来提取图像边缘信息。算法主要思路包括,将图像经过高斯滤波器平滑,使用一组或多组VLEP算子与滤波后的图像进
加权指数平均比率(ROEWA)边缘检测算子是一种较好的适用于SAR图像的边缘检测算子,但是使用梯度计算的方法不能准确地确定边缘的方向。针对这一问题,由于SAR图像受乘性噪声干扰,对
在广义模糊软集和犹豫模糊软集的基础上给出广义犹豫模糊软集的概念,并研究广义犹豫模糊软集的相似度量。首先利用三种犹豫模糊集合的包含度,构造犹豫模糊集间的相似度量公式
针对偏好信息为区间数形式、属性和专家客观权重未知的多属性群决策问题,提出通过属性评价值之间偏离程度的熵值分析和建立目标最小化的非线性规划模型确定属性客观权重,并结合