论文部分内容阅读
提出了一种新的自适应粒子群优化算法(AMPSO)。该算法在运行过程中根据粒子群多样性的度量指标大小和当前最优解的大小来确定最优粒子的变异概率以对算法进行自适应变异,从而有效地增强了粒子群优化(PSO)算法跳出局部最优解的能力,使PSO算法既摆脱了后期易陷入局部最优点的束缚,又保持了其前期搜索速度快的优点。对几个典型函数的测试结果表明,该算法是非常有效的。