论文部分内容阅读
Web文本分类是数据挖掘研究的一个热点问题.针对文本向量维度过高的特点,提出一种改进的模糊聚类RBF网络集成的文本分类方法,该方法利用模糊C均值聚类算法对文本特征向量进行简化、抽取,引入自适应遗传算法优化RBF神经网络的权值,构建RBF网络集成模型对文本进行分类.实验结果表明,该方法具有更高的分类效率和正确率.