基于生成对抗网络的图像去雾算法

来源 :指挥控制与仿真 | 被引量 : 0次 | 上传用户:hero_1205
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对有雾情况下目标检测等视觉任务精度明显下降,提出了一种端到端图像去雾网络,能够直接生成清晰图像且不需要成对的无雾图像和真实图像进行训练.将注意力模块融入生成器网络中,充分考虑不同通道和不同区域在有雾图像中的影响,并将通道注意力和像素注意力相结合,提出了一种新的特征关注模块,赋予重要特征通道和像素区域更多的权重.考虑到高低频信息在雾图中的不同影响,将频率信息融合到鉴别器中.最后,对损失函数进行了优化,添加结构损失保证循环一致性,分解鉴别器高低频损失,减少了颜色失真和伪影.实验表明,本方法在公共合成数据集和真实世界的图像上取得了较好的性能,具有更好的主观视觉效果.
其他文献
组合导航系统在实际应用中存在信号传输和解算的延时影响,直接使用带有延迟的测量数据会导致滤波算法的精度下降甚至发散.针对这类测量具有随机时延的滤波问题,提出了随机时延卡尔曼滤波算法,该算法的核心是将新的量测用于更新过去的多个状态,以此来对时延进行补偿.GNSS与INS的组合导航系统仿真结果表明,所设计的滤波算法在面对量测具有随机延时的情况下,可以减轻滤波后的尖峰现象,降低估计结果的误差.
针对雷达航迹数据特征提取不充分使得对空中目标分类识别准确率低的问题,提出了一种航迹数据高维特征矩阵提取方法.首先从机动性、巡航性、飞行区域以及高阶特征进行航迹数据分析,进而在不同维度统计数据特征、提取多维航迹数据特征参数,最终形成航迹数据高维特征矩阵.通过实测航迹数据实验表明对特征提取充分,多类机器学习方法验证识别率统计均值为92.4%,证明了本文算法的可行性与稳定性,该方法可作为提升航迹目标识别准确率的有效手段.