用于全局优化的混合正交遗传算法

来源 :计算机工程 | 被引量 : 0次 | 上传用户:mily39
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为提高正交遗传算法收敛速度和搜索精度,在正交遗传算法的基础上引入局部搜索策略,提出一种新的聚类局部搜索算子。利用正交算子初始化种群,保证初始群体分布的均匀性和多样性。通过正交算子在全局范围内进行全局搜索,使算法能在全局范围内收敛。采用聚类局部搜索算子对群体进行局部搜索,以增强算法的收敛速度和搜索精度。对7个高维的Benchmark函数进行测试,仿真实验结果表明,与其他算法相比,该算法具有更好的搜索精度、收敛速度和全局寻优的能力。
其他文献
针对常用分类方法分类精度较低和内存消耗较高的问题,设计一种基于多吸引子元胞自动机(MACA)的模式分类器tsPCM,把它应用于分布式数据挖掘。通过改变MACA的描述方法,用依赖串和依
针对现代高性能嵌入式系统异构网络之间高速实时通信的应用需求,提出一种基于FPGA的RapidIO-FC转接桥硬件设计方案。该方案以Xilinx的Virtex5开发板为平台,基于RapidIO IP核
在明确专业培养目标和规格的情况下,确定了教改的基本思路,通过合理构建教学体系、优化课程结构、规范教学等一系列措施,使本试点专业的教学适应了培养目标的要求,保障了人才培养质量。
传统的k-means算法要求用户事先给定k值,限制了很多应用,初始中心点随机选择,容易导致局部极值点,常用的评价函数对于求解最优聚类数目也不理想。针对这些问题,该文提出一种
协同过滤算法是目前个性化推荐系统中应用最成功的推荐算法之一,但传统的算法没有考虑在不同时间段内寻找最近邻居问题,导致寻找的邻居集合可能不是最近邻居集合。针对此问题,提