论文部分内容阅读
红外和可见光图像融合作为图像融合技术中一个重要组成部分,被广泛应用于军事、工业和生活领域。它能够集成两种模态图像的互补信息,融合成一幅信息丰富、质量较好的图像,不仅能够突出目标信息,还能够保持源有图像的纹理信息和一些显著性的细节。本文提出一种新的红外和可见光图像融合方法,在鲁棒稀疏表示模型的基础上增加了结构化稀疏约束,同时结合了图像区域特征相似的一致性约束项,克服现有一些方法所存在的局部模糊和纹理细节丢失等问题,提高了图像融合的精度。本文主要构建了结构化稀疏表示与一致性约束模型,将其应用到红外和可见