论文部分内容阅读
随着图像信息处理技术的发展,大量由各式飞行器对地观测所采集的遥感图像数据被应用于各领域实际生产生活中。传统遥感图像分类方法包含一系列复杂的处理流程,在处理效率和效果上已经难以满足当下的需求。随着人工智能相关技术的发展,基于卷积神经网络的遥感图像分类方法开始占据主导地位。为减少算法流程中的复杂处理与提高分类的精度,笔者提出一种基于卷积注意力模块的端到端遥感图像分类框架,该框架采用卷积神经网络框架ResNet101作为整个框架的主干网络。在ResNet101网络4个阶段的卷积模块之间嵌入卷积注意力模块,