分步动态自回归核主元分析及其在故障诊断中应用

来源 :计算机应用 | 被引量 : 0次 | 上传用户:bisha1007
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对滑动窗自适应核主元分析法(KPCA)在处理参数敏感和缓慢劣化问题时存在的"过适应"现象,容易产生漏报的问题,提出了一种分步动态自回归KPCA算法。首先,借鉴动态数据矩阵思想,分步建立初始模型;然后,在滑动窗自适应KPCA的基础上,引入指数加权法则处理实时数据、更新模型;最后,分析算法复杂度,并给出具体实现步骤。利用模拟数据分析分解系数和加权因子对算法的影响,结果表明,与滑动窗自适应KPCA相比,所提方法在参数选择恰当的情况下,模型效率提高了近90%,误报次数几乎降为0,还能通过调整加权因子取值来控制算
其他文献
1993年7月1日财政部颁布的行业会计制度和财务制度,实施8年来较好地满足了企业会计核算和财务管理的需要,发挥了应有作用.随着<会计法>、<股份有限公司会计制度>法律、法规的
针对传统电力地理信息系统(GIS)在存储能力、分析能力和扩展能力上的不足,将云计算技术应用到电力GIS领域,提出利用Hadoop云平台对电力GIS数据进行高效存储和管理的方案。首先对电力GIS各类数据的特点进行了分析,提出了关系型数据库与非关系型数据库相结合的数据存储策略,并在此基础上设计了基于Hadoop的电力GIS数据管理整体架构、相应的数据模型以及基于MapReduce的数据并行查询分析方法