【摘 要】
:
针对当前流量预测模型未考虑时空相关性的问题,影响预测精度,提出一种基于梯度提升回归树的卫星网络流量预测方法。分析卫星网络流量的时空相关性,提取与目标卫星的时空相关
【机 构】
:
大连大学信息工程学院,南京理工大学,南京信息工程大学
【基金项目】
:
国家自然科学基金(61722105,61931004,61801073)
论文部分内容阅读
针对当前流量预测模型未考虑时空相关性的问题,影响预测精度,提出一种基于梯度提升回归树的卫星网络流量预测方法。分析卫星网络流量的时空相关性,提取与目标卫星的时空相关流量作为原始的预测输入,并对得到的时空相关流量进行奇异矩阵分解,消除相关输入流量的信息重叠和冗余问题,最后通过改进的梯度提升回归树进行预测。仿真实验表明,该方法有效地提高了卫星网络流量预测的训练速度,预测精度略高。
其他文献
由于以往的行人跟踪方法大部分不能有效地解决目标被遮挡后以及目标尺寸变化再跟踪的问题,所以引入了深度学习的方法,但是经实验发现单纯使用深度学习行人跟踪会因行人检测部分的误差而出现整体的跟踪准确率不高的问题。提出了一种基于深度学习和时空约束后处理的行人跟踪方法,深度学习的行人检测部分采用了根据实际应用场景优化过的SSD算法,行人匹配部分采用了一种计算交叉输入领域差异然后进行块总结的方法,最后进行时空约
软件缺陷预测是软件工程中的一个研究热点问题,通常软件缺陷预测的研究工作主要关注于软件模块是否存在缺陷和软件模块存在缺陷的数量。目前软件缺陷数量研究主要集中在基于
生物医学成像领域的迅速发展引起相关图像信息的爆炸式增长,对其图像进行人工智能辅助分析日益成为科学研究、临床应用、即时诊断等领域的迫切需求。近年来深度学习,尤其是卷积神经网络在生物医学图像分析领域取得广泛应用,在生物医学图像的信息提取,包括细胞分类、检测,生理及病理图像的分割、检测等领域发挥日益重要的作用。介绍了深度学习及卷积神经网络相关技术的发展;重点针对近几年卷积神经网络在细胞生物学图像、医学图
Metapath2vec和Metapath2vec++异质网络表示学习方法只保持了网络原有的拓扑结构,没有考虑异质网络自身存在的聚类结构,从而降低网络中节点表示的准确性。针对此问题,基于元
玉米除草剂的种类多,应用越来越普遍.但使用技术要求较高。近年来,芮城县玉米除草剂药害时有发生,严重制约着玉米生产的进一步发展。结合芮城县玉米田实际情况,有针对性地指