论文部分内容阅读
针对特征空间维数较高时,混淆交叉支持向量机树中间节点的学习结果可能包含冗余特征信息的情况,考虑各维特征之间的相互关系以及各数据点之间的相互关系对数据的分类影响,提出一种基于有监督局部线性嵌入的支持向量机树学习模型.考虑每个中间节点上需要不同的特征信息进行局部决策,分别对每个中间节点(包括根节点)上的样例进行有监督局部线性嵌入学习.实验以手写阿拉伯数字识别问题为例验证和分析了模型的结构和分类识别性能,与其他学习模型的对比结果表明,该模型能在有监督局部线性嵌入学习的基础上,以更精简的结构获得与其他学习模型可比