论文部分内容阅读
支持向量机(SVM)是一种具有出色学习性能的新型机器学习方法,它能够较好地克服神经网络容易出现的过学习、网络结构难以确定以及局部极小等缺点。研究了小波包变换提取发动机叶片缺陷特征向量的问题,提出一种基于支持向量机的航空发动机叶片超声检测方法。实验表明,基于小波包分解提取特征向量结合支持向量机的识别方法,能够有效地区分发动机叶片部件的几种典型缺陷。