基于主题变迁的领域发展路径智能化识别——以人工智能为例

来源 :图书情报工作 | 被引量 : 0次 | 上传用户:john_cai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
[目的/意义]识别领域发展路径对于科技创新具有重要意义,但现有方法如专家访谈、引文分析等不能适应文献爆发性增长的现状,针对这一问题,提出一种基于主题变迁的领域发展路径识别方法。[方法/过程]该方法可以自动从Aminer平台获取数据,通过构建关键词-学者矩阵,综合使用KMeans++和谱聚类算法识别出研究主题和相关学者;通过相似度计算实现不同主题之间的关联,最终获得研究领域的发展路径并进行可视化展示。[结果/结论]通过对人工智能领域的实证分析,结果表明该方法能够有效反映领域研究主题的变迁,有助于研究者快速定位领域的研究热点和重点,丰富领域发展路径相关的研究方法。
其他文献
该文基于学术搜索和数据挖掘平台Aminer向用户进行个性化推荐,提出了结合协同过滤推荐和基于内容推荐的混合模型,实验表明该算法可以有效解决新物品的推荐问题,即冷启动问题
该文研究跨数据源的论文集成问题,旨在将不同数据源中的同一论文匹配起来。该文提出了两个算法来解决论文匹配的问题,第一个算法(MHash)利用哈希算法来加速匹配,第二个算法(MCNN