论文部分内容阅读
借助监督式机器学习(ML)方法,对空间翻滚目标的运动状态预测问题进行研究,为空间机器人抓捕空间翻滚目标提供可靠的数据依据.基于物理模型的运动预测方法依赖理想的建模假设,需要连续的视觉反馈信息,解决目标预测问题的能力有限.因此,本文采用机器学习中纯数据驱动方式的稀疏伪输入高斯过程(SPGP)回归方法进行空间翻滚目标的运动预测.给定空间翻滚目标运动状态的历史观测数据,通过连续优化真实观测数据,得到稀疏的伪训练数据集,进而在线快速预测目标的运动状态,预测的计算效率达到毫秒级.此外,利用马尔科夫链蒙特卡洛(MCMC)法处理连续优化过程,克服由于随机初始值造成的优化过程陷入局部极小值问题.利用Snelson数据验证了所提稀疏伪输入高斯过程回归方法的正确性,并通过4组仿真算例验证了所提方法对于空间翻滚目标运动预测的有效性和鲁棒性.