论文部分内容阅读
基于辐射传输模型(RM)和动态学习神经网络(NN),成功进行了用MODIS数据反演近地表空气温度的研究,并给出了完成这种反演的RM-NN算法。该算法用RM来模拟不同地面辐射状况下(包括不同的地表温度、近地表空气温度、发射率和大气水汽含量)卫星高度获得的辐射强度数据集,用动态学习神经网络来进行反演计算。反演分析结果表明,近地表空气温度不能直接精确地用MODIS数据反演计算得到,如果能把地表温度和发射率以及大气水汽含量作为先验知识,则能够比较精确地反演近地表空气温度。模拟分析表明,平均误差和标准偏差分别大约是