MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application

来源 :能源化学 | 被引量 : 0次 | 上传用户:wkxhm123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Flexible supercapacitors are promising energy storage devices in wearable smart electronics.Exploring cost-efficient electrodes with high capacitance would promote the wide-scale application of such capacitors.Herein,in order to explore a methodology for preparing low cost,flexible,tough,and up-scalable supercapacitor electrodes,silk textile is directly carbonized to make a conductive free-standing textile substrate.Through mildly baking the surfactant-free Ti3C2Tx flakes suspension loaded on the carbonized silk cloth,a uniform and adhesive coating consisting of nanometer-thick Ti3C2Tx flakes is well established on the conductive fabric support,forming a MXene-coated flexible textile electrode.The fabricated electrode exhibits a high areal capacitance of 362 mF/cm2 with excellent cyclability and flexibility.Moreover,capacitance changes neglegibly under the bending deformation mode.This study elucidates the feasibility of using silk-derived carbon cloth from biomss for MXene-based flexible supercapacitor.
其他文献
Electrochemical reduction of CO2 to produce value-added feedstock chemicals using high-performance electrocatalysts is a promising protocol to address the excessive CO2 in the atmosphere and the energy crisis.However,the high overpotential,low current den
The lithium sulfur batteries (LSBs) are considered as one of the promising next generation energy storage devices due to the high theoretical specific capacity of sulfur (1675 mAh g-1),naturally available,low cost.However,the practical LSBs are impeded by
The modification of polysulfide electrolyte with additives has been demonstrated as an effective way to improve the photovoltaic performance of quantum dot-sensitized solar cells (QDSCs).Most of these additives can inhibit the charge recombination process
In the past decade,researchers in the fields of energy production have concentrated on the improve ment of new energy storage devices.Lithium-ion batteries (LIBs) and faradaic supercapacitors (FSs) have attracted special attention as a result of the rapid
Sodium ion batteries have a huge potential for large-scale energy storage for the low cost and abundance of sodium resources.In this work,a novel structure of ultrafine polycrystalline TiO2 nanofibers is prepared on nickel foam/carbon cloth by a simple va
To reduce the energy consumption of the electrolytic hydrogen generation process,we propose a novel approach to generate hydrogen with acidic/alkaline amphoteric water electrolysis,wherein hydrogen is produced inside an acidic solution and oxygen evolved
Recently,the development of high-performance bifunctional oxygen catalysts integrated with flexible conductive scaffolds for rechargeable metal-air batteries has attracted considerable interest,driving by fastgrowing wearable electronics.Herein,we report
Two efficient single-site Ru water oxidation catalysts [Ru(bda)(pic)(Ln)] (bda=2,2\'-bipyridine-6,6\'-dicarboxylic acid,pic=picoline,L1=4,5-bipyridine-2,7-di-tert-butyl-9,9-dimethylxanthene,L2=4-pyridine-5-phenyl-2,7-di-tert-butyl-9,9-dimethylxanthene
Aqueous zinc-ion batteries (ZIBs) have been considered as one of the most promising electrochemical devices for large-scale energy storage system owing to their low cost and high safety.Herein,Na2V6O16·2.14H2O nanobelts are synthesized and applied as cath
A kind of solar thermochemical cycle based on methanothermal reduction of SnO2 is proposed for H2 and CO production.We find that the oxygen release capacity and thermodynamic driven force for methanothermal reduction of SnO2 are large,and suggest CH4∶SnO2