论文部分内容阅读
在大坝变形监测中,当用GM(1,1)模型对稳定变化的变形数据序列进行预测时,效果较好。但是,影响坝体变形的因素多种多样,且处于动态变化之中,观测数据中将不可避免地存在着一些随机扰动,这些扰动使大坝的变形曲线发生异常波动。此时仅用GM(1,1)模型进行预测,其精度和可靠性就会下降。为此,本文提出一种基于中值滤波的GM预测模型,即先用中值滤波算法对发生波动的原始变形监测数据进行滤波处理,而后再建立GM模型进行灰色预测。实例证明,基于中值滤波的GM预测模型可以有效地提高大坝变形的预测精度。