论文部分内容阅读
图像分类是计算机视觉中的一项重要任务,传统的图像分类方法具有一定的局限性。随着人工智能技术的发展,深度学习技术越来越成熟,利用深度卷积神经网络对图像进行分类成为研究热点,图像分类的深度卷积神经网络结构越来越多样,其性能远远好于传统的图像分类方法。本文立足于图像分类的深度卷积神经网络模型结构,根据模型发展和模型优化的历程,将深度卷积神经网络分为经典深度卷积神经网络模型、注意力机制深度卷积神经网络模型、轻量级深度卷积神经网络模型和神经网络架构搜索模型等4类,并对各类深度卷积神经网络模型结构的构造方法和特