面向新闻推荐的用户兴趣模型构建与更新

来源 :计算机应用研究 | 被引量 : 4次 | 上传用户:ll05
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对新闻推荐系统中用户兴趣模型构建与用户兴趣漂移问题,提出了一种面向新闻推荐的用户兴趣模型构建与更新方法。首先采用向量空间模型与bisecting K-means聚类算法构建了原始用户兴趣模型;然后以艾宾浩斯遗忘曲线为基础构造了遗忘函数,并以此对用户兴趣模型进行时间加权,从而达到对用户兴趣模型更新的目的。实验以基于用户的协同过滤推荐、基于物品的协同过滤推荐为baseline,实验结果表明所构建的原始用户兴趣模型推荐性能更优,在F值上提升了4%,更新后的模型与原始模型相比F值提高了1. 3%。
其他文献
针对位置社交网络(location-based social networks,LBSN)中连续兴趣点(point-of-interest,POI)推荐系统面临的数据稀疏性、签到数据的隐式反馈属性、用户的个性化偏好等挑战,提出一种融合时空信息的连续兴趣点推荐算法。该算法将用户的签到行为建模为用户—当前兴趣点—下一个兴趣点—时间段的四阶张量,并利用LBSN中的地理信息定义用户访问兴趣点的地理距离偏好