论文部分内容阅读
为了提高高维数据集合离群数据挖掘效率,在分析了传统的离群数据挖掘算法优点和缺点的基础上,提出了一种离群点检测算法,首先将非线性问题转化为高维特征空间中的线性问题,然后利用非线性数据变换进行维数约减,对所得数据对象每个投影分量逐个判断数据点是否是离群点,通过实验证明该算法不仅可用于线性可分数据集的离群点检测,而且可用于线性不可分数据集的离群点检测,表明了算法的优越性。