论文部分内容阅读
结合Landsat TM影像、Envisat ASAR的C波段雷达影像和地形辅助数据,采用决策树方法,包括分类回归树(C1assification and Regression Tree,CART)和随机森林(Random Forest,RF)算法,对扎龙湿地进行遥感分类。用实测GPS样本点对分类结果进行精度验证,并与最大似然监督分类方法(Maximum Likelihood Classification,MLC)对比。结果表明,地形辅助数据和雷达后向散射系数对湿地分类精度的提高起重要作用。基于RF