论文部分内容阅读
针对井下雾尘、低照度环境中矿井移动目标检测与识别存在检测精度低、实时性差等问题,提出了一种基于SSD-LeNet的矿井移动目标检测与识别方法。利用视觉传感器捕获矿井移动目标原始图像的一帧来构建模型输入,据此制作含有数字序列位置信息的数据集;离线训练的单镜头多盒检测器(Single Shot multibox Detector, SSD)模型可以输出与自身位置对应的目标特征类别,并利用该训练好的SSD学习模型对测试集中移动目标图片上的数字序列位置进行检测;根据数字序列位置对应的矩形区域进行字符分割操作