论文部分内容阅读
提出了一种基于概率粗糙集模型的增量式规则学习算法。该算法能够有效地从不一致和含有噪声的决策表中提取带有确定性因子和支持数的决策规则,并且所提取出的规则具有很好的抗噪声能力。同时,算法的动态调整策略可以满足规则的动态更新。最后将该算法应用于一个实例分析中,提取了满足给定参数的决策规则,分析结果验证了该算法在规则提取中的合理性。