基于移动数据的异常区域时序分析

来源 :计算机应用研究 | 被引量 : 3次 | 上传用户:lee419444083
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
移动数据描述了大量的关于移动对象活动位置和时间变化的序列,反映出城市动态规划的语义知识。发现移动对象活动的异常区域,是发现移动对象时序变化的关键分析前提。因此,针对移动对象的活动轨迹分别从时间和空间的角度进行了研究,首先,从空间区域语义知识的角度分析,利用网格对移动对象的活动区域进行划分,并结合核函数和Top-k排序方法发现异常区域;接着,从时间角度分析,采用基于二进制序列的方法,发现移动对象活动周期;最后,在真实数据集上,验证了该方法的可行性和有效性。
其他文献
为了保护个人隐私,用户倾向于在数据上传至云服务器之前将其加密。相同的明文数据被加密成不同密文数据,使云服务器无法识别出重复的加密数据。现存的解决方案多数依赖可信第三方,且没有划分数据流行度,导致安全性与执行效率较低。提出一种无须可信第三方的自适应重复删除方法。利用完美散列函数检查数据的流行度,使用口令认证密钥交换协议与同态加密安全传递数据的加密密钥,在保证用户数据隐私的前提下进行安全的重复数据删除
将流形学习中的t-SNE算法引入仿生嗅觉领域中,提出一种基于t-SNE(t-分布邻域嵌入)与LDA(线性判别分析)算法相结合的气味分类鉴定新方法。由PEN3电子鼻获取物质气味特征信息,通过t-SNE算法将非线性、高维度的气味响应数据降维到低维空间,并利用LDA算法对低维数据进行分类和识别。利用五种不同成分的纺织品材料气味信息,通过t-SNE、PCA+LDA和t-SNE+LDA三种算法做对比实验。实
针对从自然标注大数据中抽取历史沿革主题信息的问题,提出了一种融合PAM主题模型与主题偏好TextRank的方法。该方法利用PAM主题模型获取历史沿革主题基于其他相关主题的分布和不同主题基于词的分布;主题偏好TextRank算法则根据PAM所获得的主题和词的分布,在随机游走的过程中更加偏好于与历史沿革主题相关度大的节点,从而更有利于抽取历史沿革主题信息。因历史沿革主题特征复杂,与其他主题关联度大,词
针对智能手机佩戴位置多样性对移动用户行为识别结果的影响,提出一种位置无关的多模型移动用户行为识别方法。该方法通过计算手机加速度传感器所采集到的行为信号在不同佩戴位置的特征相似度,与预先计算的不同佩戴位置特征相似度进行比较,并采用相似度最大的位置特征作为测试样本,利用极速学习机(extreme learning machine,ELM)分类器对移动用户行为进行识别。实验结果证明,相对于不区分佩戴位置
生物医疗文本中的命名实体识别对于构建和挖掘大型临床数据库以服务于临床决策具有重要意义,而其中一个基础工作是疾病名称的识别。医疗文本中存在大量的复合疾病名称,难以分
针对杂波环境下且量测密度差别较大的多扩展目标量测集划分问题,引入近邻传播聚类技术,提出了一种新的量测集划分算法。该算法首先采用局部异常因子检测对量测为杂波的程度进行度量,通过设定阈值的方法进行杂波滤除;同时对于目标量测密度差别较大的问题,引入一种基于共享最近邻的相似度度量方法;考虑了周围量测的影响,通过迭代传递两个信息量逐步寻找聚类中心,避免了对初始聚类个数的选择。仿真实验表明,与传统量测集划分算
针对文本主观性分析性能不足问题,提出了一种句子级主观情感提取的模糊神经模型。该模型利用不借助词法分析的特征选择方法抽取情感特征,通过对神经网络的输入模糊化操作,从而实现了句子级的主观性检测。通过在多个数据集上的测试表明,该方法具有较高的主观性检测准确率,是一种可靠的情感分析方法,对跨语言的主观性分析有明显意义。